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ABSTRACT
The literature on composite resins has been surveyed, with particular emphasis on recent publications, to build up 
a picture of the current state of the art concerning their use in dentistry. They are shown to be versatile materials, ca-
pable of being formulated for a variety of clinical applications. A major current division is into packable (high visco-
sity) and flowable (low viscosity) types that between then can be used to repair full cavities, including in posterior 
teeth, as well as provide repairs for abfraction (Class V) lesions and for fractured incisors. Current trends in material 
composition, including varying filler loadings and use of new photo-initiators, are described. Recent clinical findings 
show good outcomes with these materials and are described in appropriate detail.
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STRESZCZENIE
W pracy przedstawiono najnowsze doniesienia dotyczące materiałów kompozytowych stosowanych w stomato-
logii odtwórczej. Kompozyty to wszechstronne materiały o wielu zastosowaniach klinicznych, które w zależności 
od składu i wynikającej z niego lepkości mogą być stosowane do pourazowej odbudowy zębów przednich, wypeł-
niania ubytków przyszyjkowych niepróchnicowego pochodzenia czy odbudowy ubytków próchnicowych, w tym 
rozległych ubytków w zębach bocznych. Najnowsze tendencje zmian tych materiałów dotyczą ilości i jakości wypeł-
niacza oraz zastosowania nowych systemów fotoinicjatorów polimeryzacji. W pracy szczegółowo opisano ostatnie 
wyniki badań klinicznych potwierdzające wysoką skuteczność materiałów kompozytowych.

Słowa kluczowe: żywice kompozytowe, polimeryzacja, właściwości, wytrzymałość.

Szymon Kubanek1, Beata Czarnecka1, John W. Nicholson2, 3

Recent advances in composite resins for clinical dentistry

Osiągnięcia w dziedzinie żywic kompozytowych w stomatologii klinicznej

1 Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Poland
2 Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, UK

3 Bluefield Centre for Biomaterials, London, UK

DOI: http://dx.doi.org/10.20883/df.2018.23

Composite resins in dentistry
In modern clinical dentistry, composite resins are 
important restorative materials with good physical 
properties (Table 1). They are made up of a poly-
meric matrix together with an inert filler, and they 
set by addition polymerization [1]. In modern ma-
terials, this setting is initiated by blue light of wave-
length 470 nm provided by a dental cure lamp. 

The components of a modern dental composi-
te resin are [2]:

A polymer phase typically based on a blend of  ›
dimethacrylate monomers;
Fillers made of powdered silicate or inert glas- ›
ses, together with a radio-opacifying agent, 
such as barium oxide;
A silane coupling agent to attach the filler and  ›
the matrix together;

A photo-initiator system which starts off the  ›
polymerization reaction.
The main monomer used is bisGMA (systema-

tic chemical name is 2,2-bis[4-(2-hydroxy-3-metha-
crylyloxypropoxy)phenyl]propane). This monomer 
is a liquid with a high viscosity and has to be blen-

Table 1. Properties of contemporary composite resins
Tabela 1. Właściwości tymczasowych żywic kompozytowych

Property Range of values
Compressive strength
Tensile strength
Flexural strength
Young’s modulus

260–300 MPa
40–50 MPa
80–150 MPa

6–14 GPa
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ded with other lower viscosity substances, such as 
di- triethylene glycol dimethacrylate, DEGDMA and 
TEDGMA respectively. An alternative monomer 
urethane dimethacrylate is used in certain brands. 
It has the advantage that its viscosity is lower than 
that of bisGMA, so there is no need to include any 
lower viscosity diluents [3].

Contemporary composite resins are cured by 
a light-activated process with camphorqunone as 
the photoinitiator. This substance needs to be used 
in association with with an aromatic tertiary amine 
as accelerator [4]. This system is sensitive to blue 
light, and shining such a light onto the composite 
resin initiates the polymerization reaction and cau-
ses the material to harden. 

There have been recent studies that suggest 
that this initiator could be improved upon. The al-
ternative initiator diphenyl(2,4,6 dimethylbenzoyl)
phosphine oxide, TPO, has been found to give hi-
gher degrees of conversion in equivalent periods 
of time because it produces free radicals more re-
adily than the camphorquinone-amine system [5]. 
This result suggests that TPO has the potential to 
increase the chemical resistance of composite re-
sins and reduce their susceptibility to mechanical 
breakdown. These would lead to improved durabi-
lity. TPO has also been shown to reduce the yellow-
ness of finished composite resins [6].

The use of light-cure means that composite re-
sins show variations in degree of cure with depth 
[7]. The lower intensity of light available deeper 
inside the composite causes fewer initiator mole-
cules to be excited, with the result that fewer free 
radicals are produced and less cure reaction takes 
place. 

In the dental clinic, this problem is dealt with 
by placing the composite layer-by-layer in the ca-
vity at thicknesses of about 2 mm [2]. This makes 
sure that there is adequate cure all the way thro-
ugh the material. There has been considerable re-
search into how this incremental build-up should 
be done in practice, with different patterns of over-
laying used, and various orientations with respect 
to the floor of the cavity [8, 9] but no one method 
appears to be ideal and they all seem to give simi-
lar results [2].

Depth of cure does vary with the shade of the 
composite and for dark shades the suggested 
2 mm layer may be too thick to allow the material 
to completely cure all the way through [10]. This is 
because some light is absorbed by the pigments 
[11], and this means that darker shades usually 
have lower recommended depths of cure than li-
ghter ones [12]. 

Polymerization shrinkage and shrinkage 
stress
In important topic of recent research has been that 
of shrinkage on polymerization, and the associa-
ted stress that this induces. This arises from the 
fact that, when composite resins set, they shrink 
slightly [13, 14]. For a dental composite resin, the-
re is a link between contraction and degree of po-
lymerization [15]. Shrinkage has important clinical 
consequences for these materials, and can result in 
either a gap forming between the margins of the 
restoration and the tooth surface or movement of 
the cusps of repaired teeth [16–18]. As composites 
undergo cure, so complicated stresses develop wi-
thin the material. However, it is not clear whether 
these effects make a significant difference to the 
clinical performance of composite resins [18]. Cer-
tainly, low shrinkage composite systems do not 
seem to show any improvement in clinical perfor-
mance, and attention is being increasingly shifted 
to enhancing the durability via increasing the resi-
stance to chemical degradation and biofilm colo-
nisation [19].

Soft start polymerization
The technique of so-called soft start polymeriza-
tion was developed in order to reduce the initial 
rate of shrinkage and to cause the stress on the 
bond to the tooth to build up slowly [20, 21]. It uses 
a specially designed cure lamp that either emits 
at low power for the first 10 seconds, then swit-
ches to maximum output for the remaining time, 
or emits with gradually increasing power, followed 
by a short time at maximum output [20, 22].

Results from laboratory studies suggest that soft 
start polymerization may be good for the restora-
tion [23–27]. Marginal adaptation seems to be bet-
ter [28–30], and there is a corresponding reduction 
in marginal leakage [31]. Unfortunately, these results 
do translate into better clinical performance. 

Cure lamps
The original cure lamps used quartz-tungsten-ha-
logen (QTH) bulbs [32], which emit light of wave-
length around 470 nm, i.e. the blue end of the vi-
sible spectrum. This corresponds well to the active 
region of the camphorquinone-amine initiator sys-
tem. QTH lamps also emit heat [33, 34], and this 
may help to increase the degree of cure [35]. 

More recently there have been moves to repla-
ce QTH lamps with light-emitting diodes, LEDs [35]. 
LEDs have an emission that is concentrated in the 
blue wavelength region of the spectrum i.e. in the 
range 440–480 nm [36, 37]. Consequently, they are 
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able to cure composites as well as QTH lamps [38], 
while at the same time generating much less heat 
[39, 40]. Composites cured using LEDs have been 
found to be well polymerized [36] and to have si-
milar mechanical properties to those cured with 
QTH lamps [41].

It is difficult to draw conclusions concerning 
which, if any, are the best types of lamp available to 
the dentist. All of them are able to produce a wel-
l-cured material, and there are no obvious differen-
ces between them. 

Fillers
Over the years, there has been a lot of interest in 
fillers of varying particle sizes for use in dental 
composites (Table 2). Recently, nanofilled and na-
no-hybrid materials have been studied in some 
detail [42]. Although claimed to be based on fillers 
of nanometre dimensions, there is recent experi-
mental evidence that these materials mainly con-
tain mainly particles with sizes above 1 μm [43]. Be-
cause of the problems of incorporating such fine 
particles into the pre-cured composite formula-
tion, they have usually been incorporated first into 
a pre-polymerized sample, which is then broken 
up and dispersed in more resin monomer, usually 
with an amount of filler with slightly larger particle 
size [44].

Physical properties of nano-filled composi-
tes are generally very good [45, 46] and their vo-
lumetric shrinkage and water sorption properties 
are comparable with composites containing larger 
particle size fillers [45]. They combine the mecha-
nical strength of hybrid composites with the poli-
shability of the microfills [47, 48] and they also have 
good wear resistance [49, 50] and good optical pro-
perties [47]. Overall, filler content rather than par-
ticle size seems to be the most important factor in 
determining the mechanical properties of the cu-
red composite [43]. This has led to the recent sug-
gestion that filler loadings should be reclassified as 

ultra-low, low and compact, with the latter giving 
the best mechanical properties because they have 
the highest filler loading [43].

As well as classifying composite resins by their 
particle size and size distribution, modern compo-
sites are often distinguished by their consistency. 
The two groups are termed “packable” (sometimes 
referred to as “condensable”) and “flowable”, and 
they differ mainly in how viscous they are. 

Packable composites have higher viscosity, and 
this is because of careful control over their filler 
particle size distribution [51]. Flowable composites, 
by contrast, have lower viscosities, and this enables 
them to be dispensed from syringes with very fine 
bore needles and to flow into small spaces [52]. 
This improves the marginal adaptation of the re-
sulting restoration. Their low viscosity is obtained 
by reducing the filler content slightly and by inclu-
ding surfactants to improve their flow [53]. These 
reductions in viscosity are achieved without com-
promising the mechanical strength properties of 
the set material. However, polymerization shrinka-
ge is increased, with one recent study showing flo-
wables with shrinkages of around 4.7% compared 
with 1.8% for so-called bulk-fill, values that compa-
re well with those of traditional composites [54].

Different consistency composite resins have 
different uses in the clinic. A universal restorative 
is designed to be used both for fine margins of re-
storations and for bulk (incremental) filling. In con-
trast, the packable and flowable types are desi-
gned for different purposes, and usually are used 
together for different parts of a given cavity resto-
ration.

Packable composites are placed using an amal-
gam condenser and set to have good mechanical 
and wear properties [55]. Because their viscosity 
is high they do not slump and hence tight inter-
proximal contacts can be obtained in practical use 
[56]. Flowable composites, on the other hand, are 
able to penetrate into small spaces, and this allows 
a good seal to be obtained at the margins of re-
storations. When set they have some flexibility and 
this allows them to perform well in regions of high 
stress, such as at the margins of Class I or Class II ca-
vities, and in Class V cavities [57].

Clinical uses
The main application of composite resins is as di-
rect repair materials in cavities of teeth [58]. The 
current estimate is that 95% of all anterior restora-
tions and 50% of all posterior restorations are now 
made with composite resin [59]. They have good 
aesthetics, and are capable of matching the natu-

Table 2: Particle size and size distribution of fi llers in 
composites
Tabela 2. Wielkość i rozmieszczenie cząstek wypełnienio-
wych w kompozytach

Type Size distribution
Macrofi ll
Microfi ll
Hybrid
Minifi ll
Nanofi ll

10–50 μm
40–50 nm

10–50 μm + 40 nm
1–10 μm + 40 nm

5–100 nm
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ral tooth in terms of shade and translucency. Mo-
dern composites last well in the mouth and can 
continue to function for long periods of time i.e. 
around 10 years or more [60]. 

Flowable composites have distinctive proper-
ties that allow then to be used for specific appli-
cations [52]. These include pit-and-fissure sealants, 
cavity liners and Class V abfraction lesions. Becau-
se of their ability to flow into surface irregularities, 
these materials provide good marginal adaptation, 
and there is evidence that microleakage is signifi-
cantly reduced when they are used as cavity liners 
and bases. 

As well as being used to repair teeth damaged 
by caries, direct composites can be used to repa-
ir fractured teeth that arise as the result of trauma 
[61]. This use also exploits their good aesthetics, 
while taking advantage of their toughness and du-
rability. Lastly, composites can be used as pit and 
fissure sealants in children’s teeth, where they su-
rvive well and are effective in reducing the occur-
rence of caries [62]. 

Fluoride-releasing composite resins
Lastly it is worth mentioning briefly that some com-
posite resins are available to the profession that are 
able to release fluoride over a sustained period fol-
lowing placement. This is achieved by adding ap-
propriate fluoride compounds to the formulation. 
The compounds used include inorganic salts (NaF 
or SnF2), fluoridated glasses and organic fluoride 
compounds. Longer-term sustained release requ-
ires only sparingly soluble fluoride salts, (SrF2 or 
YbF3), or leachable glass fillers [32]. 

The total amount of fluoride released by com-
posites tends to be relatively low. The release profi-
le also lacks an “early burst”, but is at a maintained 
low level throughout the lifetime of the restora-
tion [64, 65]. Whether this is sufficient to have a si-
gnificant clinical effect is debatable, and current 
research findings are not clear about this point 
[66]. However, low levels of fluoride are generally 
known to be beneficial [67], so there is the possi-
bility that making composites that are capable of 
releasing fluoride may have some positive preven-
tive effects in vivo.

Conclusions
This paper has the current state of the art with den-
tal composite resins. These materials are versatile, 
but show a range of properties, depending on the 
composition. Selecting a particular material for 
a specific clinical situation requires a sound know-
ledge of the features and limitations, and should 

also involve careful attention to manufacturers’ gu-
idelines and instructions. Composites remain the 
material of choice for aesthetic restorations in te-
eth and are likely to remain so well into the future.
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