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ABSTRACT
The plasminogen activating system (PAS) plays a key role, in regulating extracellular matrix, during growth, mainte-
nance and repair of all tissues. Consisting of plasminogen activators and inhibitors, it can finely modulate the rate 
of protein turnover. Extracellular stimuli such as inflammatory and hypoxic mediators, growth factors, and integrins 
are known to closely interact with cellular signaling pathways in differentially regulating PAS elements. We focus this 
review to provide an overview of the genetic mechanisms involved in regulating individual elements of this system, 
as a blueprint for future analysis of involvement of each PAS element in pathological or physiological conditions.
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STRESZCZENIE
System aktywacji plazminogenu (ang. plasminogen activating system – PAS) odgrywa kluczową rolę w regulacji 
obrotu macierzy zewnątrzkomórkowej podczas wzrostu, utrzymania i naprawy wszystkich tkanek. Składający się 
z aktywatorów i inhibitorów plazminogenu, może precyzyjnie modulować tempo obrotu białkami. Wiadomo, że 
bodźce zewnątrzkomórkowe, takie jak mediatory stanu zapalnego i hipoksji, czynniki wzrostu, i integryny wpły-
wają na komórkowe szlaki sygnałowe przy regulacji elementów PAS. Skupiamy się w tym przeglądzie na mechani-
zmach genetycznych zaangażowanych w regulację tego systemu w nadziei zidentyfikowania wyznaczników iden-
tyfikacyjnych dla poszczególnych elementów PAS, aby ułatwić bardziej precyzyjną analizę wpływu członków PAS 
w stanach patologicznych lub fizjologicznych.

Słowa kluczowe: układ plazminogenu, translacja, transkrypcja, PAI-1, uPA, uPAR, urokinaza, serpina.

Introduction
The plasminogen-activating system (PAS) has two 
activators, namely the urokinase plasminogen ac-
tivator (uPA) and the tissue-type plasminogen ac-
tivator (tPA), which correspondingly are regulated 
by specific inhibitors, the plasminogen activator 
inhibitor 1 (PAI-1) and 2 (PAI-2) which compete for 
activation of the cell membrane anchored urokina-
se plasminogen activator receptor (uPAR) [1]. 

Pathological and physiological processes mo-
dulate the rate of secretion of these components 
through cell membrane detachment [2], clathrin 
mediated recycling [3], RNA mediated translation 
interference [4] and transcription attenuation or 
stimulation [5]. 

Multiple cancer studies report variable expres-
sion of both PAS activators and inhibitors as pro-
tective and oncogenic factors [6] owing to a lack of 
clarity within the metastatic phenotype between 
stimulation of secretion and stimulation of trans-
lation of PAS elements. UPA and PAI-1, since oppo-
site in function, are within a homeostatic feedback 
with each other [7]. Physiological or pathologi-
cal depletion of one can lead to its upregulation 
to match normal levels, and a subsequent com-
pensating over expression of the other [8]. Expe-
rimentally however any depleting mechanism not 
identified and accounted for in the theoretical fra-
mework can result in the levels of the affected and 
tested for molecule appearing normal, while the 
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buffering/compensating molecule appearing over 
expressed if it is even tested for [9]. This problem 
can persist even if the theoretical function of the 
buffering molecule in the overexpressed state wo-
uld be biomechanically contradictory to the obse-
rved phenotype [10]. We observe these problems 
in studies of fibrosis with regards to uPA [11] and 
rheumatoid processes with regards to tPA [12], as 
well as wound healing and plasminogen [13]. Qu-
antitative genetic expression studies could resul-
ting in a more certain assessment of upregulation 
of expression of the target protein. Convergence 
of signaling pathways between PAS elements ma-
kes this process more difficult. Having a wide ar-
ray of possible interactions as a reference map co-
uld help to identify which pathways play a role to 
achieve a specific effective phenotype which cor-
relates with the studied pathology. 

A brief search of the literature shows a varie-
ty of environments which stimulate or inhibit the 
transcription of different combinations of PAS re-
lated genes. uPA, uPAR, and PAI-1 gene expression 
is significantly increased in Adipose Derived Stem 
Cells (ADSC) from aged patients with Coronary Ar-
tery Disease. ADSCs are found to produce more 
uPAR the older they get. PAI-1 levels in ADSC were 
found to be proportional to their angiogenic acti-
vity [14]. 

Hypoxia induces PAI-1expression primarily 
through stabilization and activation of hypoxia 
inducible factor (HIF-1a), which can transactivate 
the PAI-1 gene via direct interaction with several 
hypoxia-response cis-elements in its promoter re-
gion [15]. Chemically induced stabilization of HIF-
1a in normoxia condition is sufficient to mimic the 
effect of ambient hypoxia on induction of PAI-1 
expression in adipocytes [16]. HIF drives urokina-
se-type plasminogen activator receptor (u-PAR) 
gene expression (encoded by the gene PLAUR) [17, 
18] however these two studies did not address the 
issue of identifying a specific pathway for this ac-
tivation and so the previous summary still stands 
that the up regulation of PAI-1 via HIF drives an in-
creased production of uPA and uPAR to stabilise 
the situation. the addition from this article is that 
loss of uPAR can cause dormancy in human epider-
moid carcinoma cells [19].

Contents of cigarette smoke, aromatic hydro-
carbons such as Benzo[a]pyrene, were shown to 
induce expression of plasminogen activator inhibi-
tor-1 in A549 cells, resulting in epithelial to mesen-
chymal transition [20]. 

tPA has been reported to stimulate PAI-1 secre-
tion in human lung fibroblasts [21]. PAI-1 is one of 

the furthest downstream target genes of TGFβ/
Smad signalling [22]. Previous studies have demon-
strated that over-expression of PAI-1 can induce fi-
brosis in many organs, especially in liver, where it 
can lead to hepatocellular carcinoma [23] and vice 
versa [24, 25]. There is also a synergism between 
EGF and TGFβ to stimulate PAI-1 transcription and 
translation resulting in a much smaller, concomi-
tant, increase in uPA and uPAR [26]. TGF-β isoforms 
induce intracellular signalling via SMAD-2/3 trans-
cription factors. SMAD-2/3 regulates profibrotic 
genes, collagens, PAI-1, integrins, TGF and MMPs 
[27–36]. BMP’s on the other hand via SMAD-1/5/8 
are capable of suppressing fibrotic gene expres-
sion of TGF-β’s [37].

Bmpr2 knockout causes inhibition of lipopoly-
saccharide-regulated genes including NFκB and 
STAT3. It downregulates uPA by 8.1-fold. These fac-
tors play a key role in angiogenic and inflammato-
ry remodelling responses, but are also activated 
during tumour invasion [38].

Lipopolysaccharides cause a significant incre-
ase in mRNA expression of uPA, but a decrease in 
PAI-1, while thrombin and fibrinogen results in an 
increased expression [39]. uPA-gene therapy can 
activate latent MMPs and single chain-HGF, pro-
moting ECM degradation and hepatic regenera-
tion, and reducing fibrotic tissue in liver cirrhosis 
[40, 41].

Interleukin 1 beta (IL-1b) in peripheral blood-ma-
crophage-conditioned medium (PB-MCM) is the 
major mediator of uPA expression in chondrocy-
tes. Stimulation of human chondrocytes with pe-
ripheral blood-macrophage-conditioned medium 
was found to induce uPA expression via the JNK/
Akt/NF-κB pathway. However, subjected to a lower 
level of shear stress, PB-MCM-treated chondrocy-
tes showed inhibition of JNK and Akt phosphoryla-
tion, NF-κB activation, and uPA expression [42]. The 
shear induced PB-MCM uPA expression was com-
pletely stopped with an AMPK agonist. 

Lysophosphatidic acid (LPA) is a phospholipid 
derivative, inducing proliferation, migration and 
cytokine release via G-protein-coupled-receptors 
(GPCRs) [43]. The common pathway for the LPA 
up regulation of uPA is via PKC/CARMA3/BCL10/
MALT1/NF-κB [24, 44–50] of which NF-κB has alre-
ady been described in [38, 51, 52].

With the multitude of suggestions from vario-
us laboratory groups investigating the influence 
of PAS on their own specific application, there are 
also many suggestions as to their possible biome-
chanisms. Even within the last decade there are 
conflicting reports arising from the same fields.
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It is therefore worthwhile to see if, since these 
studies have been published, a reliable reference 
has collated these reports to highlight any gaps in 
the literature and provide deeper insights in to the 
commonalities of the issues present in these case 
studies. 

Aims
Multiple signaling pathways converge on the 
expression of PAS. Activators and receptors, and in 
special circumstances activators and inhibitors can 
be expressed by the same stimulus. The brief litera-
ture overview has identified multiple discrete path-
ways for all the possible modes of PAS activation to 
resolve the uncertainties presented by conflicting 
results in single protein studies. Our meta-analysis 
could show if currently known pathways of acti-
vation of PAS related genes have been cross refe-
renced sufficiently in order to create a comparison 
chart for studies of extracellular remodelling pro-
cesses, in order to aid the identification of a discre-
te PAS activation phenotype. 

Methods
The PubMed and Web of Science databases were 
searched for review articles written in the last 5 
years, either originally or translated into Polish or 
English, with the following key:

((Gene) AND (regulation) AND (expression) AND 
((uPA) OR (Plasminogen Activating System) OR 

(tPA) OR (PAI1) OR (uPAR)))

The results were arranged in groups of the me-
mebr of the PAS complex, and the signalling path-
way as well as the effect were collated. 

Results
35 articles were identified by the strategy, of which 
11 were relevant to the topic. A summary is availa-
ble in Table 1, detailing the specific areas present 
in current literature. 

Conclusions
There is no data regarding uPAR or PAI-2, leading 
to a lack of a comprehensive map, and there are no 
alternative pathways identified for uPA tPA, with 
only PAI-1 having a broad analysis. 

There has been little encyclopaedic work done 
within the last 5 years to bring modern methods of 
quantitative and qualitative genetic analysis to the 
forefront of research in to proteolytic degenerati-
ve conditions. The prevailing theme of selective in-
vestigation and conflicting results within modern 
lab results calls for a standardisation of protocols 
which investigate the PAS family, due to their mul-
tiple signaling routes and convergent factors. 

The current data in the field suggest a higher 
multitude of discrete stable modes of activation and 
cross activation of PAS transcription. Further asses-
sment of mechanisms of secretion and recycling co-
uld provide a more comprehensive overview of the 
PAS cycle. Alternatively, a transverse analysis of the 
data published since the conception of PAS entities 
over the last half a century could prove invaluable to 
clarify the intricacies of the PAS interactions which 
pose problems in studying modern pathologies. 
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Table 1. Synthesis of PAS genetic activation pathways reviewed within the last 5 years. Seven of the eleven reviews fo-
cused on Fibrotic pathologies and investigated PAS elements in light of their pathological involvement. Two focused on 
vascular diseases, and the remaining two on cancer 
Tabela 1. Synteza szlaków aktywacji genetycznej PAS zrewidowana w ciągu ostatnich 5 lat. Siedem z jedenastu przeglądów 
koncentrowało się na patologiach włóknistych i badało elementy PAS w świetle ich patologicznego zaangażowania. Dwie 
skupiały się na chorobach naczyniowych, a pozostałe dwie na raku

Signaling molecules Transcription factors PAS Products Reference

TGF-β p53-SMAD3 complex + PAI-1 53–58
c-Src mediated inhibition RhoA/ROCK and PPM1A + PAI-1 56
Ha-Ras/ERK1,2 MAPK, Rac1/ROS/NFκB, and Smad3 

with co-activator Sky interacting protein (SKIP)
+ uPA 57, 59–61

Kinins Unspecifi ed + tPA 62
Circadian rhythm dependent molecules CLOCK/BMAL1 and CLOCK/BMAL2 + PAI-1, - tPA 63, 64
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